Список интересных и простейших математических приемов

Содержание
  1. Умножай на пальцах, как купец
  2. Умножай, как Ферроль
  3. Умножай, как японец
  4. Умножай, как итальянец
  5. Крупный счёт прокачает решение бытовых вопросов
  6. Вам нужна только математика начальной школы
  7. Как умножить тысячи на однозначное число
  8. Как умножить тысячи на многозначное число
  9. Как правильно научить ребёнка считать
  10. Когда стоит учить ребёнка считать
  11. Какие методики обучения счёту использовать
  12. Как научить ребёнка считать до 100
  13. Как правильно научить ребёнка считать столбиком
  14. Вычитание столбиком из чисел, содержащих нули.
  15. Инженерный калькулятор
  16. Вычитание столбиком онлайн
  17. Математические калькуляторы
  18. Калькуляторы по алгебре
  19. Математические действия в столбик
  20. Как объяснить деление столбиком
  21. Деление на однозначное число
  22. Деление на двузначное число
  23. Многозначные числа
  24. Деление с остатком
  25. Как делать проверку
  26. Разбивая крупные числа на мелкие, исследователи превысили фундаментальное математическое ограничение скорости
  27. Основные понятия
  28. Свойства умножения
  29. Алгоритм умножения в столбик
  30. Умножение на однозначное число
  31. Умножение двух многозначных чисел

Умножай на пальцах, как купец

Этот метод позволяет умножать числа от 6 до 9. Для начала согни обе руки в кулаки. Затем на левой руке отогни столько пальцев, на сколько первый множитель больше числа 5. На правой проделай то же самое для второго множителя. Посчитай количество разогнутых пальцев и умножь сумму на десять. А теперь перемножь сумму загнутых пальцев левой и правой руки. Сложив обе суммы, получишь результат.

Пример. Умножим 6 на 7. Шесть больше пяти на один, значит на левой руке отгибаем один палец. А семь – на два, значит на правой – два пальца. В сумме – это три, а после умножения на 10 – 30. Теперь перемножим четыре загнутых пальца левой руки и три – правой. Получим 12. Сумма 30 и 12 даст 42.

Вообще-то здесь речь идет о простой таблице умножения, которую хорошо бы знать наизусть. Но этот метод хорош для самопроверки, да и пальцы размять полезно

Умножай, как Ферроль

Этот способ получил название по фамилии немецкого инженера, который им пользовался. Метод позволяет быстро перемножить числа от 10 до 20. Если потренируешься, то сможешь делать это даже в уме.

Суть простая. В итоге всегда будет получаться трехзначное число. Так что сначала считаем единицы, потом – десятки, затем – сотни.

Пример. Умножим 17 на 16. Чтобы получить единицы, умножаем 7 на 6, десятки – складываем произведение 1 и 6 с произведением 7 и 1, сотни – умножаем 1 на 1. В итоге получим 42, 13 и 1. Для удобства запишем их в столбик и сложим.

Умножай, как японец

Этот графический способ, которым пользуются японские школьники, позволяет легко перемножить двух- и даже трехзначные числа. Чтобы опробовать его, приготовь бумагу и ручку.

Пример. Умножим 32 на 143. Для этого нарисуем сетку: первое число отразим тремя и двумя линиями с отступом по горизонтали, а второе – одной, четырьмя и тремя линиями по вертикали. В местах пересечения линий поставим точки. В итоге у нас должно получиться четырехзначное число, поэтому условно разделим таблицу на 4 сектора. И пересчитаем точки, попавшие в каждый из них. Получаем 3, 14, 17 и 6. Чтобы получить ответ, лишние единички у 14 и 17 прибавим к предыдущему числу. Получим 4, 5 и 76 – 4576.

Умножай, как итальянец

Еще один интересный графический способ используется в Италии. Пожалуй, он проще японского: точно не запутаешься при переносе десятков. Чтобы перемножить большие числа с его помощью, нужно начертить сетку. По горизонтали сверху записываем первый множитель, а по вертикали справа – второй. При этом на каждую цифру должна приходиться одна клетка.

Теперь перемножим цифры каждого ряда на цифры каждой колонки. Результат запишем в клетку (разделенную надвое) на их пересечении. Если получилось однозначное число, то в верхнюю часть клетки пишем 0, а в нижнюю – полученный результат.

Осталось сложить все числа, оказавшиеся в диагональных полосках. Начинаем с нижней правой клетки. Десятки при этом прибавляем к единицам в соседнем столбике.

Крупный счёт прокачает решение бытовых вопросов

Как любому компьютеру нужно расширять оперативную память, так и нашему мозгу нужен отсек для быстрых операций.

Тренировки с умножением укрепят краткосрочную память. Вы перестанете забывать, закрыли ли дверь на ключ, сколько яиц лежало в холодильнике перед походом в магазин и о чём вели речь после того, как отвлеклись.

Не говоря о том, что будете мгновенно считать, во сколько обойдётся вон тот сочный кусок мяса на шашлык или заправка автомобиля, чтобы доехать до соседнего города.

Вам нужна только математика начальной школы

Чтобы умножать без бумаги, нужно на уровне рефлекса освоить два навыка:

I. Знать таблицу умножения
II. Складывать числа

Пункты важны, потому что будете десятки раз повторять операции. Получается просто, но много.

Уделяйте тренировке не больше пяти минут за подход. Потом запоминать сложнее, а после тройки долгих сессий цифры начнут раздражать.

Быстро складывать получится точно таким же постоянным запоминанием.

Почти нигде не просят знать таблицу сложения, а она есть. Если до десяти цифры знают почти все, то после этого порога начинается ступор.

На лету вспомнить, какое число будет в следующем десятке полезнее в жизни, чем любое другое вычисление. Поэтому качайте и запоминайте.

Ещё один способ сложения, которого некоторые стесняются – довод до десятка. Это когда к одному числу сначала добавляют до круглого значения часть из второго, а потом плюсуют остаток:

8+5 = 8+2+3 = 10+3 = 13

В этом способе нет ничего стыдного, он эффективен, и с практикой доводится до автоматизма.

Когда научитесь на лету умножать и складывать элементарные значения, вставайте на продвинутый уровень: расчёты четырёхзначных чисел.

Операции с умножением тысячей в уме можно разделить на два типа: умножение на однозначные и многозначные числа.

Как умножить тысячи на однозначное число

Чтобы получить ответ на, допустим, пример 3864∙7, вам поможет система Разбить-умножить, разбить-сложить.

Так выглядит алгоритм:

1. Разбиваем большое число на единицы, десятки, сотни и так далее.

3864 = 3000 + 800 + 60 + 4

2. Умножаем каждый кусочек на второе число.

3000∙7 = 21000 | 800∙7 = 5600 | 60∙7 = 420 | 4∙7 = 28

3. Разбиваем результаты на простые группы одного размера.

21000 = 20000+1000 | 5600=5000+600 | 420 = 400+20 | 28 = 20+8

20000 | 1000+5000 | 600+400 | 20+20 | 8

4. Складываем группы с конца.

20000 + 1000+5000 + 600+400 + 20+20 + 8

20000 + 6000 + 1000 + 40 + 8

27048

Хотя на бумаге способ получается долгим, через несколько дней тренировка даст заметные результаты в скорости. У вас улучшится краткосрочная память, и вместимость чисел для сложения постепенно увеличится.

Важнее всего не потерять куски при последнем сложении. Этот этап доведёте до автомата постоянной практикой.

Отличие метода от привычного столбика в том, что мы постоянно дробим элементы на лёгкие частицы, которые быстро складываются.

Как умножить тысячи на многозначное число

Здесь поможет система Якова Трахтенберга. Во время заключения нацистами математик нашёл способ счёта особо крупных чисел в уме.

Предупреждаю, что способ подойдёт только тем, кто наработал краткосрочную память на большой массив чисел. Поскольку вам придётся долго держать остаток в уме и параллельно делать десяток сложений.

Запомните метод как Принцип снежинки.

В качестве примера решим 5362∙2934. Алгоритм такой:

0. Представьте числа привычным столбиком.

1. Перемножьте конечные (2∙4) цифры сверху и снизу.

Предпоследнюю цифру при наличии держим в уме (0), последнюю отправляем в результат (8): ** *** **8.

2. Перемножьте предпоследнюю цифру верхнего числа на последнюю нижнего (6∙4) и наоборот (3∙2).

Сложите результаты с тем, что храните в уме (24+6+0=30).

Держим остаток (3), а последнее число ставим в итог слева от предыдущего (0): ** *** *08.

3. Умножьте вторую цифру верхнего числа на последнюю нижнего (3∙4) и наоборот (9∙2).

Сложите результаты (12+18=30), а к ним добавьте умноженные друг на друга третьи цифры (6∙3) и остаток в уме (30+18+3=51).

Получили десяток в уме (5) и третью с конца цифру (1): ** *** 108.

4. Умножьте первую цифру сверху на последнюю снизу (5∙4) и наоборот (2∙2).

Умножьте вторую цифру сверху на третью снизу (3∙3) и наоборот (9∙6).

Сложите четыре числа и пятое из ума (20+4+9+54+5=92).

Получили десяток в уме (9) и четвёртую с конца цифру (2): ** **2 108.

5. Умножьте первую цифру верхнего числа на третью нижнего (5∙3) и наоборот (2∙6).

Сложите результаты, а к ним добавьте умноженные друг на друга вторые числа (3∙9) и остаток в уме (15+12+27+9=63).

Получили десяток в уме (6) и пятую с конца цифру (3): ** *32 108.

6. Умножьте первую цифру верхнего числа на вторую нижнего (5∙9) и наоборот (2∙3).

Сложите результаты с остатком в уме (45+6+6=57).

Получили десяток в уме (5) и пятую с конца цифру (7): ** 732 108.

7. Умножьте первую цифру верхнего числа на первую нижнего (5∙2).

Сложите результат с остатком в уме (10+5=15).

Запишите всё число перед итоговым: 15 732 108.

Вы получили ответ.

Если ваш множитель двух- или трёхзначный, то вместо недостающих цифр нижнего ряда подставляйте нули. В таком случае последним этапом будет тот, где вы умножаете максимальное количество пар.

Принцип снежинки намного проще, чем умножать столбиком. Вам не нужно держать в уме много крупных чисел сразу.

Важна только структура: запомните нарастающий порядок умноженных пар и что с чем нужно складывать.

Единственной сложностью останется запомнить результат, который вы постепенно выстраиваете.

Чаще тренируйте память вариантами проще, например, умножением двух- и трёхзначными числами в приложении Устный счёт.

И тогда сможете считать миллионы, не коснувшись бумаги.

Как правильно научить ребёнка считать

Многие ребята приходят в первый класс уже с навыками счёта и чтения, поэтому для родителей становится актуальным вопрос: как научить ребёнка считать, если он идёт в 1 класс. Сегодня есть большое число методик, которые позволяют правильно обучить ребёнка счёту — интересно, весело, в процессе игры или выполнения простых домашних дел. Важно понимать, что в отличие от взрослых, ребёнку сложно представить что-то абстрактное, поэтому предметы, о которых вы говорите при обучении счёту, должны быть понятны и знакомы малышу, чтобы он мог посмотреть на них, потрогать. Два апельсина или четыре тарелки он сможет понять, а вот абстрактные множества — вряд ли.

Не навязывайте ребёнку обучение счёту, оно должно быть лёгким, как бы между прочим в процессе повседневных дел. Считайте привычные предметы вместе, постепенно усложняя задачки.

Когда стоит учить ребёнка считать

Большинство специалистов сходятся во мнении, что лучшее время для обучения счёту — это 3-5 лет, именно в этом возрасте ребёнок начинает испытывать интерес к новым знаниям и учится устанавливать закономерности между цифрами. Однако всё очень индивидуально, поэтому если ребёнок активно осваивает мир и интересуется цифрами раньше, можно начинать обучение и с 1,5 лет.

Какие методики обучения счёту использовать

Сегодня довольно легко узнать, как научить ребёнка считать, есть проверенные методики, которые позволяют сделать это в игровой форме, интересной для ребёнка:

  • Счёт на пальцах. Эта методика помогает понять, как научить ребёнка считать до 10. Запомнить сразу десять цифр малышу будет сложно, поэтому можно начать с пяти и ориентироваться на пальцы одной руки. Познакомьте ребёнка с названиями первых пяти цифр, далее подключите вторую руку. Можно использовать игры с пальчиками, когда один исчезает или два-три пальчика встречаются вместе.
  • Использование обучающих карточек и палочек. Можно выкладывать их по одной на стол и называть цифры, потом сдвинуть одну часть палочек вправо, а другую влево и спросить, сколько палочек в каждой части. Лучше запомнить цифры ребёнку помогут карточки с изображёнными на них предметами, например, шесть шляп, два котёнка, три банана.
  • Счёт с помощью предметов. Этот метод хорош для того, чтобы понять, как научить ребёнка считать до 20. После того, как ребёнок научится считать до десяти, объясните ему, что во втором десятке числа состоят из двух цифр, первой из цифр будут десятки, а второй — единицы. Для этого можно использовать две коробки — в одну положить десять кубиков, а в другую один, такой способ наглядно продемонстрирует разницу между десятками и единицами. Также предметы можно использовать, если вы хотите понять, как научить ребёнка считать десятками. Предметы или полоски необходимо выкладывать десятками друг за другом и объяснить ребёнку, что десятками считают так же, как единицами, но используют «дцать».
  • Игры с цифрами. Поиграйте с ребёнком в «магазин», выбрав, кто из вас будет продавцом, а кто — покупателем, назначьте валюту. Продавая или покупая конфеты и игрушки, ребёнок легко запомнит цифры до десяти и даже до двадцати.
  • Методика Монтессори. Этот метод схож с игрой в магазин, так как Мария Монтессори считала, что одним из лучших способов обучения счёту являются операции с деньгами или муляжами денег. Можно дать ребёнку разные монеты, например, рубль, два, пять и попросить его посчитать сумму или разменять.

Как научить ребёнка считать до 100

Расскажите ребёнку о том, что десятков всего девять, после этого назовите каждый десяток: десять, двадцать, тридцать и так далее. Предложите ему каждый день заучивать по 10 новых цифр каждого десятка. В конце дня спрашивайте, что ребёнок запомнил и повторяйте то, что он выучил в другие дни. Упростить повторение можно считая предметы, которые находятся перед вами. После того как ребёнок освоит десятки, предложите ему сыграть в игру: напишите ряд чисел с десятками и пропустите одно число в середине, попросив ребёнка вписать в этом месте пропущенное число.

Также можно использовать методику Глена Домана. Сначала ребёнку нужно показывать карточки с количеством точек не более пяти, затем с большим количеством точек — 20, 50 и далее до 100. Этот метод поможет также натренировать зрительную память.

Как правильно научить ребёнка считать столбиком

Когда числа до 100 освоены, встаёт вопрос, как научить ребёнка считать столбиком? Объясните, что в сложении и вычитании все действия с цифрами происходят по разрядам: десятки с десятками, единицы с единицами. Например: 31+12, тройка складывается с единицей, единица с двойкой.

Как научить ребёнка первого класса считать в столбик? Для того чтобы упростить процесс, можно воспользоваться тренировочными упражнениями — записывать числа друг под другом, например, внизу число 6, вверху число 12. Важно объяснить ребёнку, что цифра 6 должна стоять под цифрой 2, а не 1, так как относится к единицам.

Начните с простых примеров, где цифры при сложении образуют число меньше 10. Дальше можно переходить к примерам посложнее: 25+16, в этом случае сложение единиц даёт число 11, важно объяснить ребёнку, что под чертой равно к единицам нужно записать цифру один, а вторую цифру запомнить и добавить к десяткам, получится 2+1+1=4.

В случае с вычитанием нужно также начать с простых примеров, постепенно переходя к более сложным. Например: 25-16, в столбике, где стоят единицы, 5 меньше 6, объяснить ребёнку, что в этом случае мы как бы «занимаем» у десятков единицу.

Чтобы поддержать интерес ребёнка к освоению счёта и привить любовь к математике, важно в начальной школе развивать его активность и объяснять предмет в лёгкой и понятной форме. В начальной школе «Фоксфорда» занятия по математике ведут практикующие педагоги, методисты высшей категории, они знают, как заинтересовать ребят предметом и помогают с лёгкостью освоить и искренне полюбить математику.

Вычитание столбиком из чисел, содержащих нули.

Опять же, разберем на примере:

Записываем числа в столбик. Которое больше – сверху. Начинаем вычитание справа налево по одной цифре. 9 – 3 = 6.

Из нуля вычесть 2 не получится, тогда опять занимаем у цифры слева. Это нуль. Ставим над нулем точку. И снова, у нуля занять не получится, тогда двигаемся дальше к следующей цифре. Занимаем у единицы. Ставим над ней точку.

Обратите внимание:когда в вычитании столбиком над 0 есть точка, нуль становится девяткой.

Над нашим нулем есть точка, значит, он стал девяткой. Вычитаем из нее 4. 9 – 4 = 5. Над единицей есть точка, то есть она уменьшается на 1. 1 – 1 = 0. Полученный нуль не нужно записывать.

Инженерный калькулятор

Инженерный калькулятор вычисляет синус, косинус, тангенс, логарифм, экспоненту, возведение в степень и т.д.

Вычитание столбиком онлайн

Процесс нахождения разности двух чисел, при вычитании в столбик.

Вычитание столбиком онлайн

Математические калькуляторы

Математические калькуляторы: корни, дроби, степени, уравнения, фигуры, системы счисления и другие калькуляторы.

Математические калькуляторы

Калькуляторы по алгебре

Решения, подсказки и учебник линейной алгебры онлайн (все калькуляторы по алгебре).

Калькуляторы по алгебре

Математические действия в столбик

Умножение, деление, сложение и вычитание в столбик.

Математические действия в столбик

Как объяснить деление столбиком

Сначала стоит доходчиво объяснить, что такое деление на простом примере. Суть математического действия — разложить число поровну. В 3-м классе дети хорошо учатся на доступных примерах: раздают кусочки торта гостям, рассаживают кукол по 2 машинам.

Когда малыш усвоит суть деления, покажите его запись на листке. Используйте уже знакомые задания с простыми числами:

  • Сначала запишите задачу обычным способом: 250_2=?
  • Каждому числу дайте название: 250 — делимое, 2 — делитель, результат после знака равно — частное.
  • Затем сделайте сокращенную запись столбиком (уголком):
  • Рассуждайте вместе так: сначала найдем неполное частное. Это будет 2, так как оно не меньше делителя, а вернее, равно ему. В этом числе помещается один делитель, значит, в частное записываем цифру 1 и умножаем ее на 2. Заносим полученный результат под делимым. Отнимаем 2-2. Получится ноль, поэтому сносим следующее число и опять подыскиваем частное. Совершаем математическое действие до тех пор, пока не получится ноль.
  • После получения окончательного результат сделайте проверку с помощью умножения: 125х2=250.

Желательно научить третьеклассника рассуждать в процессе вычисления вслух, выполнять действия на черновике. Сначала проговаривайте алгоритм вместе, потом только слушайте ученика и помогайте исправить ошибки.

На заметку! Приучайте малыша постоянно проверять себя. Школьник должен понимать, что величина остатка вычитания в столбике деления должен всегда быть меньше делителя.

Деление на однозначное число

Возьмите листок и ручку, посадите ребенка рядом. Сначала запишите пример уголком сами. Для деления на однозначное число выбирайте такие цифры, которые дают результат без остатка (полный ответ).

Первый урок можно построить так:

  1. Положите перед ребенком картинку с образцом деления столбиком.
  2. Придумайте собственный пример. Пусть это будет 254:2
  3. Задание нужно записывать уголком. Доверьте это школьнику. Он может посмотреть, как делается запись на картинке.
  4. Спросите третьеклассника: «Какое число нужно делить на 2 первым?». В этот момент важно объяснять, что делимое должно быть равно или большего делителя. Малыш выделит для деления первое число из данной цифры: 254
  5. Теперь определите вместе, сколько двоек поместится в числе 2. Ответ: 1.
  6. Записываем частное под уголком.
  7. Умножаем 1 на 2 и записываем результат под делимым.
  8. Вычитаем.
  9. Так как получился 0, сносим следующую цифру под линию после вычитания: 5.
  10. Опять задаем вопрос: «Сколько двоек поместится в 5?» Малыш вспоминает таблицу умножения или подбирает частное с помощью логики. Отвечает: 2.
  11. Записываем 2 в частное, умножаем на 2.
  12. Результат (4) записываем под 5.
  13. Отнимаем.
  14. Остается 1. Единицу разделить на 2 нельзя, поэтому сносим остатки делимого вниз. Получается 14.
  15. Делим 14 на 2. Записываем в частное 7.
  16. Умножаем на 2. Записываем под чертой 14.
  17. Отнимаем.
  18. В конце всегда должен получаться 0.
  19. В результате у ребенка сформируется такая запись:

Для закрепления запишите еще 3–5 примеров на деление на этом же листочке. Не отходите далеко от школьника, образец не прячьте, не превращайте урок в проверочную работу. Малыш только учится делить. На этом этапе помогайте ему, подсказывайте и наталкивайте на правильное решение для повышения уверенности в себе.

На заметку! Для автоматизации навыка деления столбиком можно составить небольшую памятку, где прописан каждый этап математического действия.

Разрешайте школьнику смотреть в нее до тех пор, пока он сам не забудет об образце.

Деление на двузначное число

Когда ученик 3-го класса усвоил деление на однозначное число, можно приступать к следующему этапу — работе с двузначными цифрами. Начинайте с простых, явных примеров, чтобы малыш понял алгоритм действий. Например, возьмите числа 196 и 28 и объясните принцип:

  1. Сначала подберите примерное число для ответа. Для этого выясните приблизительно, сколько цифр 28 поместится в 196. Для удобства можно округлять оба числа: 200:30. Получится не больше 6. Полученное число не нужно записывать, это только догадка.
  2. Проверяем результат умножением: 28х6. Получается 196. Предположения оказались верными.
  3. Запишите ответ: 196:28 =6.

Еще один вариант обучения: деление на двузначное число уголком. Такой способ больше подходит для работы с числами от четырех разрядов, то есть тысяч. Приведем простой пример:

  1. Напишите на листе бумаги 4070, начертите уголок и подпишите делитель — 74.
  2. Определите, с какого числа начнете делить. Спросите у ребенка, можно ли разделить 4 на 74, 40? В результате малыш поймет, что сначала нужно ограничиться числом 407. Очертите полученную цифру сверху полукругом. 0 останется в стороне.
  3. Теперь нужно выяснить, сколько 74 поместится в 407. Действуем с помощью логики и проверки умножением. Получится 5. Записываем результат под уголком (под делителем).
  4. Теперь умножаем 74 на 5 и записываем результат под делимым. Получится 370. Важно начинать запись с первого числа слева.
  5. После записи нужно подвести горизонтальную черту и отнять 370 от 407. Получится 37.
  6. 37 разделить на 74 нельзя, поэтому вниз сносится оставшийся в верхнем ряду 0.
  7. Теперь делим 370 на 74. Подбираем множитель (5) и записываем его под уголком.
  8. Умножаем 5 на 74, записываем результат в столбик. Получится 370.
  9. Опять получаем разность. Результат будет равен 0. Значит, деление считается завершенным без остатка. 4070_74=55. Частное смотрим под уголком.

Для проверки правильности решение произведите умножение: 74х55=4070.

Есть мнение! Иметь в доме решебник с ГДЗ многие родители считают недопустимым. А зря. С помощью готовых заданий ребенок может легко проверить себя. Главное — правильно объяснить школьнику назначение сборника ДЗ с ответами.

Многозначные числа

Сложнее всего детям даются задачи на трехзначные и четырехзначные числа. Четверокласснику тяжело оперировать тысячами и сотнями тысяч. У школьника возникают следующие проблемы:

  1. Не может определить неполное число делимого для первого действия. Вернитесь к изучению разрядов натуральных чисел, поработайте над развитием внимания малыша.
  2. Пропускает 0 в записи частного. Это самая распространенная проблема. В результате у ребенка получается число на несколько разрядов меньше правильного. Чтобы избежать этой ошибки, нужно распечатывать памятку с последовательностью действий в примерах, где в середине частного есть нули. Предложите ребенку тренажер с такими заданиями для отработки навыка.

При обучении решению задач с крупными числами действуйте поэтапно:

  1. Объясните, что такое неполное делимое и зачем его выделять.
  2. Потренируйтесь в поиске делимого устно без последующего решения задач. Например, дайте детям такие задания:

Найдите неполное частное в примерах: 369:28; 897:12; 698:36.

  1. Теперь приступайте к решению на бумаге. Запишите столбиком: 1068:89.
  2. Сначала нужно отделить неполное делимое. Можно использовать запятую сверху над числами.

106’8:89

  1. Подбирайте частное на отдельном листочке или посчитайте в уме.
  2. Распишите результат.
  3. Внимательно отнимайте цифры от делимого. Следите за тем, чтобы результат после вычитания был меньше делителя.
  4. Продолжайте деление до конца, пока не получится 0.
  5. Придумайте еще несколько похожих примеров без остатка. Степень сложности увеличивайте постепенно.

На заметку! Примеры с семизначными цифрами с третьеклассниками решать не нужно. Это лишнее. Достаточно остановиться на заданиях с пятизначными числами (до 10 000). Деление миллионов дети проходят в старших классах.

Деление с остатком

Завершающим этапом уроков на закрепление навыка деления будет решение заданий с остатком. Они обязательно встретятся в решебнике для 3–4-го класса. В гимназиях с математическим уклоном школьники изучают не только неполные числа, но и десятичные дроби. Форма записи примера уголком останется прежней, отличаться будет только ответ.

Примеры на деление с остатком берите несложные, можно преобразовывать уже решенные задания с целым числом в ответе, прибавляя к делимому единицу. Это очень удобно для ребенка, он сразу увидит, чем примеры похожи и чем отличаются.

Урок может выглядеть так:

  1. Расскажите ученику третьего класса, что не все цифры можно поделить поровну. Для иллюстрации понятия возьмите натуральное число до 10. Например, попробуйте вместе разделить 9 на 2. Форма записи решения столбиком получится такой:
  2. Объясните школьнику, что остатком считается последнее число для деления, которое меньше делителя. Конец записи будет таким: 9_2=4 (1 — остаток).

На заметку! Отделять целое число от остатка запятой, делать из него дробное на начальном этапе обучения делению не нужно. Записывайте остаток отдельно, чтобы школьник видел конечный результат разности в столбике.

Как делать проверку

Проверка деления производится с помощью умножения: делитель умножается на делитель. Делать это можно столбиком:

Теперь проверим:

Для проверки деления с остатком нужно:

  1. Умножить полное частное на делитель.
  2. Прибавить к результату остаток.

17х2=34

34+1 (остаток) =35

Алгоритм проверки правильности решения примера деления не изменяется от разрядности цифр.

Разбивая крупные числа на мелкие, исследователи превысили фундаментальное математическое ограничение скорости

Четыре тысячи лет назад жители Вавилонии изобрели умножение. А в марте этого года математики усовершенствовали его
18 марта 2019 два исследователя описали самый быстрый из известных методов перемножения двух очень больших чисел. Работа отмечает кульминацию давнишнего поиска наиболее эффективной процедуры выполнения одной из базовых операций математики.
«Все думают, что метод умножения, который они учили в школе, наилучший, но на самом деле в этой области идут активные исследования», — говорит Йорис ван дер Хувен, математик из Французского национального центра научных исследований, один из соавторов работы.

Сложность множества вычислительных задач, от подсчёта новых цифр числа π до обнаружения крупных простых чисел сводится к скорости перемножения. Ван дер Хувен описывает их результат как назначение своего рода математического ограничения скорости решения множества других задач.
«В физике есть важные константы типа скорости света, позволяющие вам описывать всякие явления, — сказал ван дер Хувен. – Если вы хотите знать, насколько быстро компьютеры могут решать определённые математические задачи, тогда перемножение целых чисел возникает в виде некоего базового строительного блока, по отношению к которому можно выразить такую скорость».
Почти все учатся перемножать числа одинаково. Записываем числа в столбик, перемножаем верхнее число на каждую цифру нижнего (с учётом разрядов) и складываем результат. При перемножении двух двузначных чисел приходится проделать четыре более мелких перемножения для получения итогового результата.
Школьный метод “переноса” требует выполнения n2 шагов, где n – количество цифр в каждом из перемножаемых чисел. Вычисления с трёхзначными числами требуют девяти перемножений, а со стозначными – 10 000.
Метод переноса нормально работает с числами, состоящими из нескольких цифр, однако начинает буксовать при перемножении чисел, состоящих из миллионов или миллиардов цифр (чем и занимаются компьютеры при точном подсчёте π или при всемирном поиске больших простых чисел). Чтобы перемножить два числа с миллиардом цифр, нужно будет произвести миллиард в квадрате, или 1018, умножений, – на это у современного компьютера уйдёт порядка 30 лет.
Несколько тысячелетий считалось, что быстрее перемножать числа нельзя. Затем в 1960 году 23-летний советский и российский математик Анатолий Алексеевич Карацуба посетил семинар, который вёл Андрей Николаевич Колмогоров, советский математик, один из крупнейших математиков XX века. Колмогоров заявил, что не существует обобщённого способа умножения, требующего меньше, чем n2 операций. Карацуба решил, что такой способ есть – и после недели поисков он его обнаружил.

Анатолий Алексеевич Карацуба
Умножение Карацубы заключается в разбиении цифр числа и повторной их комбинации новым способом, который позволяет вместо большого количества умножений провести меньшее количество сложений и вычитаний. Метод экономит время, поскольку на сложения уходит всего 2n шагов вместо n2.

Традиционный метод умножения 25х63 требует четыре умножения на однозначное число и несколько сложений

Умножение Карацубы 25х63 требует трёх умножений на однозначное число и несколько сложений и вычитаний.
a) разбиваем числа
b) перемножаем десятки
c) перемножаем единицы
d) складываем цифры
e) перемножаем эти суммы
f) считаем e – b – c
g) собираем итоговую сумму из b, c и f

При росте количества знаков в числах метод Карацубы можно использовать рекурсивно.

Традиционный метод умножения 2531х1467 требует 16 умножений на однозначное число.

Умножение Карацубы 2531х1467 требует 9 умножений.
«Сложение в школе проходят на год раньше, потому что это гораздо проще, оно выполняется за линейное время, со скоростью чтения цифр слева направо», — сказал Мартин Фюрер, математик из Пенсильванского государственного университета, создавший в 2007 быстрейший на то время алгоритм умножения.
Имея дело с крупными числами, умножение Карацубы можно повторять рекурсивно, разбивая изначальные числа почти на столько частей, сколько в них знаков. И с каждым разбиением вы меняете умножение, требующее выполнения многих шагов, на сложение и вычитание, требующие куда как меньше шагов.
«Несколько умножений можно превратить в сложения, учитывая, что с этим компьютеры будут справляться быстрее», — сказал Дэвид Харви, математик из Университета Нового Южного Уэльса и соавтор новой работы.
Метод Карацубы сделал возможным умножать числа с использованием лишь n1,58 умножений на однозначное число. Затем в 1971 году Арнольд Шёнхаге и Фолькер Штрассен опубликовали метод, позволяющий умножать большие числа за n × log n × log(log n) небольших умножений. Для умножения двух чисел из миллиарда знаков каждое метод Карацубы потребует 165 трлн шагов.

Йорис ван дер Хувен, математик из Французского национального центра научных исследований
Метод Шёнхаге-Штрассена используется компьютерами для умножения больших чисел, и привёл к двум другим важным последствиям. Во-первых, он ввёл в использование технику из области обработки сигналов под названием быстрое преобразование Фурье. С тех пор эта техника была основой всех быстрых алгоритмов умножения.
Во-вторых, в той же работе Шёнхаге и Штрассен предположили возможность существования ещё более быстрого алгоритма – метода, требующего всего n × log n умножений на один знак – и что такой алгоритм будет наибыстрейшим из возможных. Это предположение было основано на ощущении, что у такой фундаментальной операции, как умножение, ограничение операций должно записываться как-то более элегантно, чем n × log n × log(log n).
«Большинство в общем-то сошлось на том, что умножение – это такая важная базовая операция, что с чисто эстетической точки зрения ей требуется красивое ограничение по сложности, — сказал Фюрер. – По опыту мы знаем, что математика базовых вещей в итоге всегда оказывается элегантной».
Нескладное ограничение Шёнхаге и Штрассена, n × log n × log(log n), держалось 36 лет. В 2007 году Фюрер побил этот рекорд, и всё завертелось. За последнее десятилетие математики находили всё более быстрые алгоритмы умножения, каждый из которых постепенно подползал к отметке в n × log n, не совсем достигая её. Затем в марте этого года Харви и ван дер Хувен достигли её.
Их метод является улучшением большой работы, проделанной до них. Он разбивает числа на знаки, использует улучшенную версию быстрого преобразования Фурье и пользуется другими прорывами, сделанными за последние 40 лет. «Мы используем быстрое преобразование Фурье гораздо более грубо, используем его несколько раз, а не один, и заменяем ещё больше умножений сложением и вычитанием», — сказал ван дер Хувен.
Алгоритм Харви и ван дер Хувена доказывает, что умножение можно провести за n × log n шагов. Однако он не доказывает отсутствия более быстрого метода. Гораздо сложнее будет установить, что их подход максимально быстрый. В конце февраля команда специалистов по информатике из Орхусского университета опубликовала работу, где утверждает, что если одна из недоказанных теорем окажется верной, то этот метод и вправду будет скорейшим из способов умножения.
И хотя в теории этот новый алгоритм весьма важен, на практике он мало что поменяет, поскольку лишь немного выигрывает у уже используемых алгоритмов. «Всё, на что мы можем надеяться, это на трёхкратное ускорение, — сказал ван дер Хувен. – Ничего запредельного».
Кроме того, поменялись схемы компьютерного оборудования. Двадцать лет назад компьютеры выполняли сложение гораздо быстрее умножения. Разрыв в скоростях умножения и сложения с тех пор серьёзно уменьшился, в результате чего на некоторых чипах умножение может даже обгонять сложение. Используя определённые виды оборудования, «можно ускорить сложение, заставляя компьютер умножать числа, и это какое-то безумие», — сказал Харви.
Оборудование меняется со временем, но лучшие алгоритмы своего класса вечны. Вне зависимости от того, как компьютеры будут выглядеть в будущем, алгоритм Харви и ван дер Хувена всё ещё будет самым эффективным способом умножать числа.

Основные понятия

Во всем мире принято использовать эти десять цифр для записи чисел: 0, 1, 2, 3, 4, 5, 6, 7, 8, 9. С их помощью создается любое натуральное число.

Название числа напрямую зависит от количества знаков.

  • Однозначное — состоит из одного знака
  • Двузначное — из двух
  • Трехзначное — из трех и так далее.

Разряд — это позиция, на которой стоит цифра в записи. Их принято отсчитываются с конца.

Разряд единиц — то, чем заканчивается любое число. Разряд десятков — то, что находится перед разрядом единиц. Разряд сотен стоит перед разрядом десятков. На место отсутствующего разряда всегда можно поставить ноль.

  • В числе 429 содержится 0 тысяч, 4 сотни, 2 десятка и 9 единиц.

Умножение — арифметическое действие в котором участвуют два аргумента. Один множимый, второй множитель. Результат их умножения называется произведением.

Свойства умножения

1. От перестановки множителей местами произведение не меняется.

  • a * b = b * a

2. Результат произведения трёх и более множителей не изменится, если любую группу заменить произведением.

  • a * b * c = (a * b) * c = a * (b * c)

Самое главное в процессе вычисления — это знание таблицы умножения. Это сделает подсчет упорядоченным и быстрым.

Важно помнить правило: умножение в столбик с нулями дает в результате ноль

  • а * 0 = 0, где а — любое натуральное число.

Алгоритм умножения в столбик

Как умножать в столбик — рассмотрим умножение в столбик по шагам:

1. Запишем пример в строку. Выберем и подчеркнем из двух чисел наименьшее, чтобы не забыть при новой записи поставить его вниз.

2. Записываем произведение в виде столбика. Сначала наибольший множитель, затем наименьший, тот что мы подчеркнули ранее. Слева ставим соответствующий знак и проводим черту под которой будем записывать ход решения. Важно обратить внимание разряды, чтобы единицы стояли стоять под единицами, десятки под десятками и т. д.

3. Поэтапно производим необходимые действия. Каждую цифру первого множителя нужно умножить на крайнюю цифру второго. Это действие происходит справа налево: единицы, десятки, сотни.

Если результат получится двузначным, под чертой записывается только последняя его цифра. Остальное переносим в следующий разряд путем сложения со значением, полученным при следующем умножении.

4. После умножения на единицу второго множителя с остальными цифрами необходимо провести аналогичные манипуляции. Результаты записывать под чертой, сдвигаясь влево на одну позицию.

5. Складываем то, что нашли и получаем ответ.

Умножение на однозначное число

Для решения задачи по произведению двух натуральных чисел, одно из которых однозначное, а другое — многозначное, нужно использовать способ столбика. Для вычисления воспользуемся последовательностью шагов, которую рассмотрели выше.

Возьмем пример 234 * 2:

1. Запишем первый множитель, а под ним второй. Соответствующие разряды расположены друг под другом. Двойка находится под четверкой.

2. Последовательно умножаем каждое число в первом множителе на второй, начиная с единиц и продвигаясь к десяткам и сотням.

3. Ответ запишем под чертой:

Производить действия необходимо в следующей последовательности:

Умножение двух многозначных чисел

Если оба множителя — многозначные натуральные числа, нужно действовать следующим образом.

Рассмотрим пример 207 * 8063:

  1. Сначала запишем наибольшее 8063, затем наименьшее 207. Нужно разместить цифры друг под другом справа налево:
  1. Последовательно перемножаем значения разрядов. Результатом является неполное произведение.
  1. Далее перемножаем десятки. Первый множитель умножим на значение разряда десятков второго и т.д. Результат запишем под чертой.
  1. По аналогии действуем с сотыми. Ноль пропускаем в соответствии с правилом. Так получилось второе неполное произведение:
  1. Далее складываем два произведения в столбик.
  1. Получившееся семизначное число — результат умножения исходных натуральных чисел.

Ответ: 8 063 * 207 = 1669041.

Источники

  • https://teenage.by/article/umnozhenie-bez-kalkuljatora
  • https://www.iphones.ru/iNotes/kak-umnozhat-tysachi-v-ume-06-17-2020
  • https://externat.foxford.ru/polezno-znat/kak-nauchit-rebenka-schitat
  • https://www.calc.ru/Vychitaniye-Stolbikom-Pravila-Vychitaniya-V-Stolbik.html
  • https://razvitie-vospitanie.ru/kak_nauchit/rebenka_delit_v_stolbik.html
  • https://habr.com/ru/post/451860/
  • https://skysmart.ru/articles/mathematic/umnozhenie-v-stolbik

Рейтинг
( Пока оценок нет )
Понравилась статья? Поделиться с друзьями:
Лайфхаки на каждый день, полезные советы
Добавить комментарий

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!: